무절연 고온초전도자석은 차세대 핵융합을 비롯해 자기공명영상장치(MRI) 등 미래 산업을 이끌 기반 기술이다. 현재 의료·바이오, 신소재, 에너지, 전력, 수송, 군사 등 여러 분야로 빠르게 파급되고 있다. 이 기술은 빌 게이츠가 꼽은 2019년 10대 혁신 기술이기도 하다.
적용 사례를 보면 최근 미국 MIT와 커먼웰스퓨전시스템사가 공동 개발 중인 차세대 초소형 핵융합 장치(SPARC)를 들 수 있다. 후발 주자인 영국의 토카막에너지사도 이와 비슷한 초소형 핵융합 장치를 무절연 고온초전도자석 기술로 개발하고 있다. 미국 국립고자기장연구소, 프랑스 그르노블 국립고자기장연구소, 중국 과학원 등에서 개발 중인 40T급 초고자기장 연구용 자석이나 일본 도시바의 9.4T급 의료 진단용 초고자기장 MRI, MIT와 일본 이화학연구소의 신약 개발용 단백질 분석 장비도 이 기술로 개발이 이뤄지고 있다. 유럽 핵물리연구소와 일본 스미토모중공업 등에서 개발하고 있는 암 치료용 초소형 가속기, 미국 나사(NASA)의 1.4㎿ 항공기용 전기 추진기, 러시아 고등기술연구소의 500㎾급 항공기용 전기 추진, 일본 중부전력의 초전도 자기에너지 저장 장치도 마찬가지다.
국내에서도 지난 2015년 ㈜서남이 MIT와 고온초전도자석을 공동 개발해 2017년 기초과학연구원(IBS) 액시온·극한상호작용연구단에 18T 70㎜급을 납품했다. ㈜수퍼제닉스와 전기연구원도 고온초전도다극자석을 개발해 IBS의 중이온가속기(RAON)에 투입할 예정이다. 기초과학지원연구원은 2015년부터 기계연구원·㈜서남·군산대·서울대와 함께 400㎒ 무냉매 무절연 고온초전도 NMR 자석을 개발하고 있다.
과학기술정보통신부가 주최하고 한국연구재단과 서울경제신문이 공동 주관하는 ‘이달의 과학기술인상’ 4월 수상자인 한승용(46) 서울대 전기정보공학부 교수는 초소형·초경량 무절연 고온초전도자석을 개발하고 직류 자기장 세계 신기록을 달성한 공을 인정받았다.
비교적 높은 온도에서 전기저항이 0이 돼 많은 전류 손실 없이 전송하는 고온초전도 현상은 1986년 처음 밝혀진 후 항공기·선박 등의 대형 전기 추진 시스템, MRI와 신약 개발 분석 장비, 신재생에너지 저장 장치 등 파급 효과를 불러왔다. 하지만 순간적으로 초전도 특성이 사라지는 퀜치(Quench) 현상으로 고온초전도자석이 타버리는 문제를 해결하기 위해 기존에는 테이프 형태의 초전도선 사이에 절연체를 넣었다.
한 교수는 이런 관행을 깨고 절연체를 없앤 ‘무절연 고온초전도자석’을 세계 최초로 제안했다. 그 결과 기존 세계 최고 성능의 초전도자석에 비해 크기와 무게를 100분의 1로 줄인 초소형·초경량 초전도자석을 개발했다. 지난 20여 년간 깨지지 않았던 직류 자기장 최고 기록인 44.6T의 벽을 넘어 45.5T의 신기록도 썼다.
한 교수 연구팀이 개발한 무절연 고온초전도자석은 직경 34㎜, 길이 53㎜에 불과하지만 기존보다 50배 이상의 에너지밀도로 설계돼 초고자기장을 효율적으로 발생시킬 수 있다. 미국 핵융합 벤처기업 MIT-CFS가 한 교수팀이 개발한 기술 특허에 기술료를 지불하고 차세대 초소형 핵융합 장치 개발에 나서는 것도 이 때문이다.
한 교수는 “이번 연구로 초전도자석의 패러다임을 바꾼 것으로 평가받는다”며 “고자기장 자석 기술은 광범위한 전기기기에 활용되는 원천 기술이라 바이오·의료·에너지·수송·환경·국방 등에 응용될 수 있다”고 설명했다.
/고광본 선임기자 kbgo@sedaily.com
< 저작권자 ⓒ 서울경제, 무단 전재 및 재배포 금지 >